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TRANSDUCER ARRAY INTERACTION MODELING
USING VARIATIONAL PRINCIPLES

INTRODUCTION

This document will detail a method for Walculating the radiation interaction effects between
active transducers in an array, comm, . -: - ,wn as the radiation impedance, using variational
methods. A brief review of previous treat' *,as of the radiation impedance for single mode and
multimode transducers will be given. These ireraction treatments will be modified, using the
variational principle, to yield expressions for the seli and mutual radiation impedance which do
not require exact solutions for the surface pressure of the radiator. Specific calculations of the
self and mutual impedances for baffled pistons and flexural disks will be presented and
compared with previous theoretical treatments. The extension of these variational expressions

to flextensional transducers will be briefly discussed.
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RADIATION IMPEDANCE

SINGLE MODE PLANAR TRANSDUCERS (PRITCHARD, 1960)

-TRANSDUCER MOTION DESCRIBED BY FIXED VELOCITY DISTRIBUTION

-FORCE ON nth RADIATOR DUE TO PRESENCE OF N RADIATORS IN ARRAY

N
fI' IZ.mv, Zw" Rnm+D.

Iml

WHEREZmISI THE MUTUAL RADIATION IMPEDANCE BETWEEN m AND n

-NET RADIATION IMPEDANCE ON nth RADIATOR
Zn N Z VM

Vn m-1 Vn

-RADIATION IMPEDANCES FOR TWO PISTONS ((k&)2 << 1, (.id) << 1)

Z11. I. J.11¶a)] + 1H1(2* Z,, - R,, [ai k + Ij*
Srin kd .okd

FIGURE 1

The classic theoretical treatment of mutual interaction is that of R.L. Pritchard ["Mutual

Acoustic Impedance Between Radiators in an Infinite Rigid Plane," J. Acoust. Soc. Am. 32,

pp.730-737 (1960)] for circular pistons in an infinite rigid baffle. Because the pistons are

assumed to be rigid as well, their motion is defined by a fixed, constant velocity distribution.

The total force on a specific piston in the array can then be described as the sum of the mutual

impedances between each element multiplied by their velocities. The total radiation impedance

on the radiator is that force divided by the velocity of the radiator. C.J. Bouwkamp ["A

Contribution to the Theory of Acoustic Radiation," Phil. Res. Rep. 1, pp. 262-264 (1946)]

determined that the radiation impedance for a radiator can be calculated by integrating the

directivity pattern K(O,+) of the radiator over real and imaginary values of 0. For two identical

pistons, the directional characteristic is the product of K for a single radiator and K for two

point elements. Carrying out this integration, Pritchard determined the self radiation

impedance in terms of the Bessel function J1(2ka) and the Struve function H,(2ka), ka being the

dimensionless radius of the piston. The mutual impedance, in its analytic form, was found to be

a doubly infinite sum of products of Bessel functions and spherical Hankel functions. After

taking limits for the size of the pistons [(ka)2<<l] and for their separation distance kd [kd>>ka],

Pritchard arrived at his famous "rule": that the mutual impedance between radiators is simply

the product of the self radiation resistance and simple sinusoidal functions which decrease as

the distance between the radiators increases.
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RADIATION IMPEDANCE

"PRITCHARD MODEL FOR MUTUAL IMPEDANCE VALID ONLY FOR:

-PLANAR ARRAYS IN INFINITE RIGID BAFFLE
-SINGLE MODE OF OPERATION (DESCRIBED BY VELOCITY)
-VERY LOW FREQUENCY or
-SMALL RADIATOR SIZE pnd
-LARGE INTER-RADIATOR SPACING

" LOW FREQUENCY ARRAYS OF FLEXTENSIONAL TRANSDUCERS
DO NOT USUALLY CONFORM TO THESE CHARACTERISTICS

" PREVIOUS ANALYSES USING PRITCHARD'S RULE FOR ARRAYS OF
FLEXTENSIONAL TRANSDUCERS HAVE SHOWN THAT ERRONEOUS
BEAM PATTERNS MAY BE CALCULATED, PARTICULARLY WHEN THE
ARRAY IS STEERED

" NEED TO DEVELOP FORMALISM FOR CALCULATING RADIATION
IMPEDANCES WHICH DOES NOT RELY ON PRITCHARD ASSUMPTIONS

FIGURE 2

Unfortunately, this simple model is not a valid approximation for many types of arrays

currently in use. The reason for this is that the assumptions used in deriving Pritchard's rule are

not applicable to other types of transducers, particularly flextensionals, because their motion

cannot be described by a single velocity. Furthermore, many arrays violate the assumption that

the radiators are spaced far apart. It has been seen in previous analyses that arbitrarily using

Pritchard's expression for the mutual impedance in the modeling of arrays of flextensional

transducers leads to incorrect predictions for the beam pattern, especially when the array is

steered. This is caused by the fact that, in a steered array, the velocity distributions on the

radiators are no longer identical due to phasing. Because of these inadequacies, it is necessary

to develop a formulation for predicting the radiation impedance which does not depend on

Pritchard's assumptions for radiator type, size and separation.
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RADIATION IMPEDANCE

MULTIPLE MODE TRANSDUCERS (SHERMAN, 1970)
-TRANSDUCER VELOCITY DESCRIBED BY IN-VACUO MODE EXPANSION

rn,,

-SURFACE PRESSURES CAN BE EXPANDED USING THE SAME COEFFICIENTS

101 n..4

-POWER RADIATED BY THE ARRAY

P - I ReJ ~ 5 ~ud

2 1. n~o il .0
*Z"q IS THE MODAL RADIATION IMPEDANCE

FIGURE 3

One such formulation, for transducers capable of radiating in multiple modes, was developed

by C.H. Sherman ["General Transducer Array Analysis," Scientific Rept. No. 6, Cont. N00014-

67-C-0424, Parke Mathematical Laboratories (1970)]. Consider an array of N radiators. The

surface velocity of the jth radiator may be expressed, as in many standard treatments, as an

expansion in its in-vacuo vibration modes. The coefficients V j may also be used to expand the

pressure on the jth radiator. This expansion includes contributions from all the other N
radiators in the array. The total power radiated by the array is an integral of the surface velocity

multiplied by the pressure over the radiating area. Summing over each of the N surfaces and
substituting in the pressure and velocity expansions allows the power to be expressed as a

double sum over the radiators and a double sum over the modes. The factor Z,,ij is the mutual

radiation impedance between the nth pressure mode of the ith radiator and the mth velocity

mode of the jth radiator, evaluated over the surface of the jth radiator. The procedure outlined

is completely general and does not depend on exactly how one determines the radiated power in

terms of the velocity coefficients. The method for determining the pressure function p(i(f) has

also not been explicitly specified, nor is an exact solution for the velocity coefficients required.

Therefore, this expression for determining the radiation impedance is suitable for variational

analysis.
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VARIATIONAL CALCULATION OF RADIATION IMPEDANCE

-ASSUME EACH RADIATOR IS VIBRATING IN ONE PARTICULAR MODE

-ASSUME FOURIER EXPANSION FOR PRESSURE
P(r,o)- IP©'. L P W ,(r) a"

2m

-VARIATIONAL EXPRESSION FOR RADIATED POWER (PIERCE, 1987)

P -EELSRe J[P]
2k

WHERE

I o L L ,-k a L N 1 N N

J[ P I -A - X XP ., v 1 + 4x -1 2 v m I K I

•J [p] IS STATIONARY WITH RESPECT TO VARIATIONS IN PRESSURE

6,1- L 3 j 6P,4-0

nw---J-1 f~l "

FIGURE 4

To implement a variational treatment for the modal radiation impedance, we first assume that

each element in the array is vibrating in a single mode, which will be marked by the coefficient

v K. Thus the surface velocity of each radiator is prescribed exactly. The surface pressure in

polar coordinates is approximated as a Fourier series in the angular variable 0, while the radial

dependence is represented by an approximate trial function 'mj which will incorporate as many

of the physical characteristics of the exact solution as possible. A variational formulation of

the radiated power was developed by A.D. Pierce ["Stationary Variational Expressions for

Radiated and Scattered Acoustic Power and Related Quantities," IEEE J. Ocean. Eng. OE-12,

pp. 404-411 (1987)] for radiators with prescribed surface velocities. With our expressions for

the velocity and surface pressure, the power is written in terms of a functional J[p], which has

summations over the number of pressure trial functions L, the number of radiators N, and the

harmonics. From the form of J[p], each pressure mode is related to every other pressure mode

through the matrix [A] and to the surface velocity modes of all the radiators via the matrix [B].

The most important characteristic of J[p] is that, because it is variational in nature, it is

stationary with respect to variations in the pressure. This means that we can differentiate J[p]

with respect to the pressure expansion coefficients Pmj. Because the variation bPmj is arbitrary,

this variation leads to a set of simultaneous linear equations for the pressure expansion

coefficients. In theory this set of equations is infinite due to the harmonics; however, in

practice we truncate the harmonic summation to 2M+ 1 terms.
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VARIATIONAL CALCULATION OF RADIATION IMPEDANCE

-SOLVING THIS SET OF SIMULTANEOUS EQUATIONS RELATES PRESSURE

COEFFICIENTS TO RADIATOR VELOCITIES

0,)-ix(kUatAmt 1ImJ{v} -Ih2(k@)[Gml{V)

•RE-EXPRESS J[p] IN TERMS OF VELOCITIES

Jfpi-n*ka)2 {V)T[(2 - 0,[G6.IT[AJ [aG] - qGm[A. i) + rlK]{v)
- n(ka)2 (VT[JJ(V)

-VARIATIONAL EXPRESSION FOR RADIATED POWER NOW CONFORMS
TO SHERMAN'S EXPRESSION

-RADIATION IMPEDANCES NOW CAN BE ASSOCIATED WITH ELEMENTS
OF THE N X N MATRIX [JI

-DIAGONAL ELEMENTS GIVE MODAL SELF RADIATION IMPEDANCES
•OFF-DIAGONAL ELEMENTS GIVE MODAL MUTUAL RADIATION IMPEDANCES

FIGURE 5

Due to the form of J[p], each of the pressure harmonics is decoupled, simplifying the

solution somewhat. The matarix [A] can be separated into LxL component matrices [Am], while

the matrix [B] can be div;ded into NxL submatrices [B1.. Solving the system of equations

arising from the pressure variation allows us to relate the set of L pressure expansion

coefficients {(P} for the mth harmonic to the set of N velocities of the radiators {v}, thereby

expressing the pressures in Sherman's form. Substituting for the pressure coefficients in the

functional J[p] now yields an expression solely in terms of the velocities of the radiators, where

the matrix [J] has the dimensions NxN. Therefore, the variational expression for the radiated
power now conforms to that of Sherman, and therefore we can determine what the modal

radiation impedances are from the elements of the radiated power matrix [J]. The diagonal

elements yield the self radiation impedances, since they correspond to contributions to the

radiated power where the velocity coefficients are the same. The off diagonal elements give the

mutual radiation impedances. As you might expect, the matrix [J] is symmetric.
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GEOMETRY FOR RADIATION IMPEDANCE CALCULATION

-PRESSURE EXPANSON

C 1 \ L.

Sv, (•I )- L.()• •

r WHERE

t i(r) j ( 7' rna)

*VELOCITy FOR FLEXURAL
DISKS

WHERE

FIGURE 6

To test this hypothesis, calculations for circular pistons and flexural disks in an infinite rigid

baffle were made. The radiators have a radius a, and the motions of each can be described in a

local coordinate system (ri, 0j) with origins at the radiator center. The surface velocities of the

radiators are either uniform (in the piston case) or represented as modes of a simply supported

elastic plate, which most closely conforms to the ideal edge condition for a flexural disk in a

baffle. The coefficients km,, and pmare determined from the simply supported boundary

conditions [A.W. Leissa, "Vibrations of Plates," NASA SP-160, Washington, D.C., 19691,

where MK denotes the number of nodal lines and s the number of nodal circles. The rigid baffle

is assumed to be circular, with a radius b>'*a to simulate an infinite baffle. This baffle defines a

global coordinate system (r,0) in which the pressure trial functions are defined, in essence over

all space. The behavior of the surface pressure on the circular baffle must be included explicitly

because the Helmholtz integral equation, from which the variational expression is derived,

requires that the integrating surface be either closed or infinite and planar [J.H. Ginsberg, P.T.

Chen and A.D. Pierce, "Analysis Using Variational Principles of the Surface Pressure and

Displacement Along an Axisymmetrically Excited Disk in a Baffle," J. Acoust. Soc. Am. 88

pp. 548-559 (1990)]. The radial dependence of the trial functions 11 mj (r) is chosen such that

the pressure functions become zero at the edge of the baffle and satisfy continuity conditions at

the origin.
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COMPARISON OF SELF RADIATION IMPEDANCE
(PISTONS, 15 PRESSURE FUNCTIONS)
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FIGURE 7

The variationally determined self radiation impedance for a piston radiator is compared here

with closed form results from Pritchard. To expedite the calculation, it was assumed that the

separation distance between the two radiators was zero, i.e., that they overlapped. Due to the

axisymmetry of the surface velocity, only the m=O harmonic is required in the pressure

expansion. The agreement between the variational and exact solutions is very good for the most

part, with poorer agreement as the dimensionless radius ka decreases. The reason for this poor

agreement is that more pressure trial functions are required for smaller ka than for larger ka, due

to the form of the pressure trial function and the manner in which the matrix [A] is calculated.

This is apparent because it appears that the radiation resistance, in the variational case, does not

appear to be approaching zero as it should. The variational method is not very satisfactory for

this case because it takes much longer to compute the result than using the analytical expression

8



COMPARISON OF SELF RADIATION IMPEDANCE

(SIMPLY SUPPORTED FLEXURAL DISK IN 0-0 MODE,
15 PRESSURE FUNCTIONS)
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FIGURE 8

A similar result occurs for the lowest order (Mi--O, s=O) flexural disk mode. Self and mutual

radiation impedances for flexural disks radiating in their fundamental mode were computed by

D.T. Porter ["Self- and Mutual-Radiation Impedance and Beam Patterns for Flexural Disks in a

Rigid Plane," J. Acoust. Soc. Am. 36, pp. 1154-1161 (1964)] based on an approximate

expression for the surface velocity. The analytic results for the self radiation impedance were

given in terms of zeroth and first order Bessel and Struve functions of argument 2ka. As in the

piston case, only the m=O harmonic of the pressure expansion is required for the variational

calculation, because the flexural disk is moving axisymmetrically. Again, the agreement

between the variational method and the analytical result is quite good, with the largest

discrepancy occurring for small values of ka and for the reactance. Unlike the piston case, it

appears that the variational result does go to zero as ka approaches zero. This improved

convergence is due to the shape of the velocity distribution for the flexural disk case. The

surface velocity goes to zero at the edge of the flexural disk, which provides a built-in

convergence factor in the calculations of the matrices [B] and [K].
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COMPARISON OF MUTUAL RADIATION IMPEDANCE
(PISTON%, kawl, 15 PRESSURE FUNCTIONS, 5 HARMONICS)
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FIGURE 9

The mutual radiation impedance for two identical pistons, calculated variationally, is

compared to Pritchard's analytical results for a range of values of separation distance kd. Recall

that the mutual impedance, in its exact form, is a double infinite sum of products of Bessel

functions of argument ka and spherical Hankel functions of argument kd. Since we now have

two radiators present, the axisymmetry of the problem has been eliminated and now several

azimuthal harmonics must be used. As might be expected, the further apart the radiators are,

the fewer pressure expansion functions are required for convergence, and the better the

agreement. As kd decreases, the agreement becomes worse, which is to be expected. The

closer together the radiators are, the more pronounced the interaction effect, and hence more

trial functions are required to model it well. We also note that, for larger values of kd, the

agreement again deteriorates. This is because, as the separation between the radiators increases,

the angle 0 (in the global coordinate system) subtended by them decreases. Therefore, higher

harmonics in the pressure expansion are required to match the behavior of the velocity

distribution. A subject for future study would be to address the interplay between separation

distance and number of trial functions and/or harmonics required for convergence. In addition,

it must be noted that other trial functions for the radial pressure dependence, such as Bessel

functions, could be used which satisfy the imposed boundary conditions; these alternative trial

functions might improve the convergence of the variational approximation as well.
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COMPARISON OF MUTUAL RADIATION IMPEDANCE
(SIMPLY SUPPORTED FLEXURAL DISKS IN 0-0 MODE,

k-Il, 15 PRESSURE FUNCTIONS, 5 HARMONICS)
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FIGURE 10

The mutual radiation impedance of two flexural disks in the fundamental mode is compared

with Porter's analytical results. The analytical mutual impedance solution involves two infinite

sums and four finite sums over Bessel functions of argument ka and spherical Hankel functions

of argument kd. Again, the agreement is quite good, with smaller values of kd leading to larger

discrepancies between the variational and exact values. Also, the deterioration in X12 due to

neglecting the higher harmonics is demonstrated as well. It appears that the overall agreement

for the flexural disk case is worse than for the piston case, a possible consequence of the more

complicated surface velocity distribution, and hence more complicated forms for the [B] and

[K] matrices. In particular for large kd, the variation in the surface velocity would require even

more harmonics be included than in the piston case. The computational efficiency of the

variational method is now comparable to that of the exact solution, where many terms in the

infinite sums are required for the exact solution to converge. This shows that, while a

variational calculation may not be desirable for the simpler situations for which exact solutions

exist, it does begin to demonstrate some merit for more complicated situations. Also note that

Pritchard's sinusoidal dependence on the separation distance appears to hold in this case, which

is understandable because we are still dealing with a planar radiator in an infinite rigid baffle.

11



DS N T

VARIATIONAL MODELING OF RADIATION IMPEDANCE-
CONCLUSIONS

-SHERMAN FORMULATION OF MUTUAL RADIATION IMPEDANCE ALLOWS
FOR ANALYSIS OF MULTI-MODE TRANSDUCERS

-VARIATIONAL FORMULATION FOR RADIATED POWER MAY BE RECAST
INTO SHERMAN'S FORM, ALLOWING THE MODAL RADIATION IMPEDANCE
TO BE CALCULATED VARIATIONALLY, WITHOUT NEEDING TO SOLVE FOR
THE SURFACE PRESSURES EXACTLY

-COMPARISONS OF VARIATIONAL RESULTS WITH EXACT CALCULATIONS
FOR PISTONS AND FLEXURAL DISKS IN RIGID BAFFLES ARE GOOD

-FLEXIBILITY IN CHOOSING PRESSURE SOLUTIONS IS QUITE ATTRACTIVE
FOR CALCULATING HIGHER ORDER MODAL IMPEDANCES, AS WELL AS
FOR DETERMINING THE RADIATION IMPEDANCE OF NON-PLANAR
RADIATORS

FIGURE 11

In conclusion, it has been demonstrated that the Sherman formulation for calculating modal

radiation impedances is sufficiently general to be utilized with any multi-mode transducer. The

variational formulation for the radiated power, which does not require an exact formulation for

the surface pressure, is readily recast into Sherman's form, and hence is useful for estimating

these modal impedances. The comparison between variational and exact results in the case of

baffled pistons and flexural disks is good in general, with poorer results for smaller values of ka

and kd. Since no exact solution for the surface pressure is required, the variational method

seems to be well-suited for calculating the radiation impedance of higher order modes of

flexural disks, where the surface velocity will no longer be axisymmetric in the local coordinate

system. A test of this would be to see if the radiated power, both for a single flexural disk as

well as a pair, decreases significantly as one changes the velocity mode from the fundamental

mode. In addition, impedances for non-planar radiators such as flextensionals could be

calculated variationally, possibly using finite element methods to provide the in-vacuo surface

velocities of the modes describing the transducer motion. The effects of phasing could also be
included by allowing the transducer to have a complex surface velocity and pressure, allowing

the effects of steering on radiation impedance to be ascertained. The resulting improvement in

array modeling programs could potentially be dramatic.
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